A mathematical model to determine molecular kinetic rate constants under non-steady state conditions using fluorescence recovery after photobleaching (FRAP).

نویسندگان

  • Tanmay P Lele
  • Donald E Ingber
چکیده

Fluorescence recovery after photobleaching (FRAP) analyses of binding and unbinding of molecules that interact with insoluble scaffolds, such as the cytoskeleton and nuclear matrix, in living cells commonly assume that this process is at equilibrium over the time scale of fluorescence recovery. This assumption breaks down for relatively fast intracellular processes like focal adhesion assembly at the leading edge of a migrating cell, or changes of transcriptional activation in the nucleus, that can occur in a matter of a few minutes. In this paper, we formulate a mathematical model that permits FRAP to be used to determine kinetic rate constants of molecules that interact with insoluble cellular structures under non-steady state conditions. We show that unlike steady state FRAP, fluorescence recovery time scales under these unsteady conditions are determined not only by unbinding rates, but also by the overall assembly and disassembly dynamics of the structural scaffold which supports these binding interactions. Experimental data from FRAP analysis and quantification of scaffold assembly dynamics may be combined and used with our mathematical model to estimate kinetic rate constants, as well as the apparent rate constant of scaffold assembly and disassembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved mathematical approach for determination of molecular kinetics in living cells with FRAP.

The estimation of binding constants and diffusion coefficients of molecules that associate with insoluble molecular scaffolds inside living cells and nuclei has been facilitated by the use of Fluorescence Recovery after Photobleaching (FRAP) in conjunction with mathematical modeling. A critical feature unique to FRAP experiments that has been overlooked by past mathematical treatments is the ex...

متن کامل

Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins.

Fluorescence recovery after photobleaching (FRAP) has become a popular technique to investigate the behavior of proteins in living cells. Although the technique is relatively old, its application to studying endogenous intracellular proteins in living cells is relatively recent and is a consequence of the newly developed fluorescent protein-based living cell protein tags. This is particularly t...

متن کامل

Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions.

Understanding of cell regulation is limited by our inability to measure molecular binding rates for proteins within the structural context of living cells, and many systems biology models are hindered because they use values obtained with molecules binding in solution. Here, we present a kinetic analysis of GFP-histone H1 binding to chromatin within nuclei of living cells that allows both the b...

متن کامل

Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching.

Fluorescence recovery after photobleaching (FRAP) measurements offer an important tool for analyzing diffusion and binding processes. Confocal scanning laser microscopes that are used in FRAP experiments bleach regions with a radially Gaussian distributed profile. Previous attempts to derive analytical expressions in the case of processes governed by fast diffusion have overlooked the character...

متن کامل

Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle

Cajal bodies (CBs) are evolutionarily conserved nuclear organelles that contain many factors involved in the transcription and processing of RNA. It has been suggested that macromolecular complexes preassemble or undergo maturation within CBs before they function elsewhere in the nucleus. Most such models of CB function predict a continuous flow of molecules between CBs and the nucleoplasm, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical chemistry

دوره 120 1  شماره 

صفحات  -

تاریخ انتشار 2006